Metastable evolutionary dynamics: crossing fitness barriers or escaping via neutral paths?

نویسندگان

  • E van Nimwegen
  • J P Crutchfield
چکیده

We analytically study the dynamics of evolving populations that exhibit metastability on the level of phenotype or fitness. In constant selective environments, such metastable behavior is caused by two qualitatively different mechanisms. On the one hand, populations may become pinned at a local fitness optimum, being separated from higher-fitness genotypes by a fitness barrier of low-fitness genotypes. On the other hand, the population may only be metastable on the level of phenotype or fitness while, at the same time, diffusing over neutral networks of selectively neutral genotypes. Metastability occurs in this case because the population is separated from higher-fitness genotypes by an entropy barrier: the population must explore large portions of these neutral networks before it discovers a rare connection to fitter phenotypes. We derive analytical expressions for the barrier crossing times in both the fitness barrier and entropy barrier regime. In contrast with 'landscape' evolutionary models, we show that the waiting times to reach higher fitness depend strongly on the width of a fitness barrier and much less on its height. The analysis further shows that crossing entropy barriers is faster by orders of magnitude than fitness barrier crossing. Thus, when populations are trapped in a metastable phenotypic state, they are most likely to escape by crossing an entropy barrier, along a neutral path in genotype space. If no such escape route along a neutral path exists, a population is most likely to cross a fitness barrier where the barrier is narrowest, rather than where the barrier is shallowest.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The rate at which asexual populations cross fitness valleys.

Complex traits often involve interactions between different genetic loci. This can lead to sign epistasis, whereby mutations that are individually deleterious or neutral combine to confer a fitness benefit. In order to acquire the beneficial genotype, an asexual population must cross a fitness valley or plateau by first acquiring the deleterious or neutral intermediates. Here, we present a comp...

متن کامل

On Crossing Fitness Valleys with the Baldwin Effect

Escaping local optima and crossing fitness valleys to reach higher-fitness regions of a fitness landscape is a ubiquitous concept in much writing on evolutionary difficulty. The Baldwin effect, an interaction between non-heritable lifetime plasticity (e.g. learning) and evolution, has been shown to be able to guide evolutionary change and ‘smooth out’ abrupt fitness changes in fitness landscape...

متن کامل

Positive feedback in coordination games: stochastic evolutionary dynamics and the logit choice rule

We show that under the logit dynamics, positive feedback among agents (also called bandwagon property) induces evolutionary paths along which agents repeat the same actions consecutively so as to minimize the payoff loss incurred by the feedback effects. In particular, for paths escaping the domain of attraction of a given equilibrium—called a convention—positive feedback implies that along the...

متن کامل

Crossing a fitness valley as a metastable transition in a stochastic population model

We consider a stochastic model of population dynamics where each individual is characterised by a trait in {0, 1, . . . , L} and has a natural reproduction rate, a logistic death rate due to age or competition and a probability of mutation towards neighbouring traits at each reproduction event. We choose parameters such that the induced fitness landscape exhibits a valley: mutant individuals wi...

متن کامل

Population size effects in evolutionary dynamics on neutral networks and toy landscapes

We study the dynamics of a population subject to selective pressures, evolving either on RNA neutral networks or on toy fitness landscapes. We discuss the spread and the neutrality of the population in the steady state. Different limits arise depending on whether selection or random drift is dominant. In the presence of strong drift we show that the observables depend mainly on Mμ, M being the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bulletin of mathematical biology

دوره 62 5  شماره 

صفحات  -

تاریخ انتشار 2000